A - B - C
/ \ / \
D E F G
/ \ / \
H - I - J - K - L
\ / \ /
M N O P
\ / \ /
Q - R - S
| Place the numbers 1-19 in the hexagon, such that each of the 12 lines of three numbers have the same sum. What are the lowest and highest possible common sums? (Or is this possible?) |
Source: Original. Based on a puzzle from Sudipta Das.
Here is Al Zimmermann's summary:
Here are the attainable common sums and the number of ways (disregarding
rotations and reflections) in which they can be attained:
Sum Number of Ways
---------------------
22 4
23 2
24 6
25 6
26 4
27 11
28 5
29 8
30 0
31 8
32 5
33 11
34 4
35 6
36 6
37 2
38 4
These are the four ways for achieving a sum of 22:
1---9--12 1--13---8
/ \ / \ / \ / \
18 19 8 6 18 19 12 10
/ \ / \ / \ / \
3--17---2--16---4 3--17---2--16---4
\ / \ / \ / \ /
14 15 13 11 14 15 9 7
\ / \ / \ / \ /
5--10---7 5---6--11
1--14---7 1--18---3
/ \ / \ / \ / \
18 19 13 6 19 17 15 9
/ \ / \ / \ / \
3--17---2--11---9 2--16---4---8--10
\ / \ / \ / \ /
15 16 12 5 14 12 13 7
\ / \ / \ / \ /
4--10---8 6--11---5
The four solutions for a sum of 38 can be derived by replacing each number n
in the above four solutions by the number 20-n.