A
J-- --B
-- --
I C
\ /
H\ /D
G--F--E
|
|
Source: Reader Chuck Johnson, citing his grandson.
Let the common sum of each side be SUM . Then,
(A+B+C)+(C+D+E)+(E+F+G)+(G+H+I)+(I+J+A) = 5 * SUM
=> A+C+E+G+I+55 = 5 * SUM ( as the sum of the first 10 integers = 55 )
=> A+C+E+G+I = 5 * ( SUM - 11 )
Now,
1+2+3+4+5 < = A+C+E+G+I < = 6+7+8+9+10
=> 14 < = SUM < = 19
The only possible solutions are :
SUM = 14
1
10 9
3 4
6 8
5 7 2
SUM = 16
1 1
10 8 8 5
5 7 7 10
2 6 6 2
9 4 3 3 9 4
SUM = 17
2 1
9 7 9 6
6 8 7 10
1 5 2 3
10 3 4 8 5 4
SUM = 19
6
5 4
8 9
1 3
10 2 7
The last 3 solutions can be obtained from the first 3 on
replacing each number by ( 11 - NUMBER ) .