A - B - C
/ \ / \ / \
D - E - F - G
/ \ / \ / \ / \
H - I - J - K - L
\ / \ / \ / \ /
M - N - O - P
\ / \ / \ /
Q - R - S
|
Place the numbers 1-19 in the hexagon, such that each of the twelve triangles
of six numbers have the same sum. These include triangles such as ABCEFJ and
BEFIJK. What are the lowest and highest
possible common sums?
Extension: Find a solution which also has these sets equal to the common sum: the six corners (ACHLQS), the six sides (BDGMPR), and the six central values (EFIKNO). |
Source: Original.
Sum = 50
1 12 17
19 13 5 9
8 7 2 11 6
14 4 10 18
15 16 3
|
Sum = 52
2 12 13
17 15 4 10
11 1 6 14 5
18 9 3 16
7 19 8
|
Sum = 53
1 8 19
9 18 5 11
16 7 2 13 3
10 12 4 17
6 15 14
|
Sum = 54
1 10 18
19 16 5 3
12 2 4 17 7
15 8 9 11
13 14 6
|
Sum = 55
1 5 19
16 14 10 3
11 7 6 13 4
17 2 9 15
12 18 8
|
Sum = 56
1 4 18
6 16 15 3
19 12 2 7 11
8 5 13 14
10 17 9
|
Sum = 57
1 7 15
12 16 10 4
18 2 8 14 6
17 9 5 11
3 19 13
|
Sum = 58
1 7 14
8 13 17 2
19 11 6 4 15
9 3 16 12
10 18 5
|
Sum = 59
1 4 19
14 15 8 5
10 7 12 13 2
16 3 6 17
11 18 9
|
Sum = 60
1 4 19
6 12 14 8
18 13 10 7 2
11 5 9 15
3 16 17
|
Sum = 61
1 2 19
4 17 14 3
18 13 8 7 10
6 5 12 15
11 16 9
|
Sum = 62
1 8 19
18 16 4 2
10 3 14 17 6
13 7 9 11
15 12 5
|
Sum = 63
2 1 17
4 16 15 3
19 10 12 9 7
11 6 8 13
5 18 14
|
Sum = 64
1 6 19
17 13 7 3
10 5 18 15 2
16 4 8 12
11 14 9
|
Sum = 65
1 2 19
3 18 11 5
16 13 14 7 9
4 6 10 17
12 15 8
|
Sum = 66
2 5 13
6 12 18 1
19 11 16 4 14
9 3 15 10
8 17 7
|
Sum = 67
1 5 19
10 8 16 3
17 13 18 7 4
11 2 15 9
6 12 14
|
Sum = 68
7 1 18
2 11 17 4
15 19 14 6 9
3 5 16 10
12 8 13
|
Sum = 70
3 4 19
7 15 11 1
14 13 18 9 12
2 6 16 10
17 8 5
|
Sudipta Das' list of solutions:
Here is a list of solutions :
Sum Number of solutions 50 6 52 2 53 4 54 2 55 22 56 12 57 8 58 4 59 16 60 8Another 84 solutions can be obtained from those listed above by replacing each number N by ( 20 - N ). So, from a magic triangled-hexagon with a sum S, you can get a magic triangled-hexagon with a sum of (20 * 6 - S) or (120 - S). The first 84 solutions are:
Read the solutions as: Sum : A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S * : Sum of corners = Common Sum + : Sum of sides = Common Sum # : Sum of center six = Common Sum 50: 1,12,17,18,14,4,10,8,7,2,11,6,13,5,9,19,15,16,3 *# 50: 1,12,17,19,13,5,9,8,7,2,11,6,14,4,10,18,15,16,3 *# 50: 1,16,17,18,10,4,14,8,11,2,7,6,9,5,13,19,15,12,3 *# 50: 1,16,17,19,9,5,13,8,11,2,7,6,10,4,14,18,15,12,3 *# 50: 5,12,13,19,15,3,9,8,1,2,17,6,18,10,4,14,11,16,7 *# 50: 5,14,8,16,4,17,9,13,10,2,3,11,18,1,15,12,6,19,7 *# 52: 2,12,13,17,15,4,10,11,1,6,14,5,18,9,3,16,7,19,8 52: 2,16,11,19,3,14,10,13,9,6,4,7,18,1,15,12,5,17,8 53: 1,8,19,9,18,5,11,16,7,2,13,3,10,12,4,17,6,15,14 53: 1,15,19,17,4,12,10,16,13,2,7,3,11,5,18,9,6,8,14 53: 4,13,12,19,14,2,11,7,1,8,15,5,18,9,3,16,10,17,6 53: 4,16,7,17,3,15,11,12,9,8,2,10,18,1,14,13,5,19,6 54: 1,10,18,19,16,5,3,12,2,4,17,7,15,8,9,11,13,14,6 54: 1,11,12,14,9,17,3,18,8,4,5,13,15,2,16,10,7,19,6 55: 1,5,19,16,14,10,3,11,7,6,13,4,17,2,9,15,12,18,8 *# 55: 1,6,19,8,11,14,9,18,13,4,7,2,12,5,10,15,3,16,17 55: 1,7,18,8,10,15,9,19,13,4,6,3,12,5,11,14,2,16,17 55: 1,8,18,17,9,13,4,15,7,6,12,2,19,3,11,10,5,16,14 *# 55: 1,9,19,16,18,2,7,11,3,6,17,4,13,10,5,15,12,14,8 *# 55: 1,10,15,16,11,12,4,18,3,6,13,5,19,7,9,8,2,17,14 *# 55: 1,11,18,19,16,3,5,9,4,6,15,8,12,7,10,14,17,13,2 *# 55: 1,13,18,14,10,7,12,9,15,6,4,8,5,3,16,19,17,11,2 *# 55: 1,14,19,15,5,10,13,11,17,6,3,4,7,2,18,16,12,9,8 *# 55: 1,15,11,18,9,13,3,19,2,6,10,12,17,7,14,5,4,16,8 *# 55: 1,15,18,16,10,7,9,19,5,4,14,3,12,13,11,6,2,8,17 55: 1,14,19,16,11,6,9,18,5,4,15,2,12,13,10,7,3,8,17 55: 2,4,18,15,14,11,3,10,8,6,12,5,17,1,9,16,13,19,7 *# 55: 2,9,18,15,19,1,8,10,3,6,17,5,12,11,4,16,13,14,7 *# 55: 2,14,18,16,4,11,12,10,17,6,3,5,8,1,19,15,13,9,7 *# 55: 2,16,10,19,9,12,3,18,1,6,11,13,17,8,14,4,5,15,7 *# 55: 3,7,14,17,16,9,1,11,2,6,15,10,18,5,8,12,13,19,4 *# 55: 3,7,16,19,13,10,1,9,5,6,14,8,18,2,11,12,15,17,4 *# 55: 3,11,16,19,17,2,5,9,1,6,18,8,14,10,7,12,15,13,4 *# 55: 3,12,9,13,7,18,5,16,10,6,2,15,14,1,17,11,8,19,4 *# 55: 3,12,9,17,11,14,1,16,2,6,10,15,18,5,13,7,8,19,4 *# 55: 3,12,11,19,8,15,1,14,5,6,9,13,18,2,16,7,10,17,4 *# 56: 1,4,18,6,16,15,3,19,12,2,7,11,8,5,13,14,10,17,9 56: 1,6,19,8,12,16,4,18,15,2,5,10,7,3,17,13,11,14,9 56: 1,13,18,14,17,5,4,19,3,2,16,11,7,15,12,6,10,8,9 56: 1,14,19,17,13,7,3,18,5,2,15,10,8,12,16,4,11,6,9 56: 5,1,15,3,16,17,4,18,12,2,8,10,11,6,9,14,7,19,13 56: 5,3,15,8,19,12,1,18,4,2,16,10,14,11,6,9,7,17,13 56: 5,3,18,8,9,19,4,15,17,2,6,7,11,1,16,12,10,14,13 56: 5,4,15,9,19,11,1,18,3,2,17,10,14,12,6,8,7,16,13 56: 5,8,18,16,6,17,1,15,12,2,11,7,14,3,19,4,10,9,13 56: 5,9,18,17,6,16,1,15,11,2,12,7,14,4,19,3,10,8,13 56: 5,12,15,14,16,6,4,18,1,2,19,10,11,17,9,3,7,8,13 56: 5,14,18,19,9,8,4,15,6,2,17,7,11,12,16,1,10,3,13 57: 1,7,15,11,17,9,5,18,2,8,14,6,16,10,4,12,3,19,13 57: 1,7,15,12,16,10,4,18,2,8,14,6,17,9,5,11,3,19,13 57: 1,7,18,9,19,4,10,15,5,8,14,3,11,12,2,17,6,16,13 57: 1,7,18,17,11,12,2,15,5,8,14,3,19,4,10,9,6,16,13 57: 1,9,15,16,10,14,2,18,4,8,12,6,19,5,11,7,3,17,13 57: 1,11,18,19,5,14,4,15,9,8,10,3,17,2,16,7,6,12,13 57: 1,12,18,19,4,14,5,15,10,8,9,3,16,2,17,7,6,11,13 57: 1,16,18,17,2,12,11,15,14,8,5,3,10,4,19,9,6,7,13 58: 1,7,14,8,13,17,2,19,11,6,4,15,9,3,16,12,10,18,5 58: 1,8,19,9,11,13,7,14,17,6,3,10,4,2,18,16,15,12,5 58: 1,12,19,16,18,2,4,14,3,6,17,10,7,13,11,9,15,8,5 58: 1,12,19,18,16,4,2,14,3,6,17,10,9,11,13,7,15,8,5 59: 1,4,19,14,15,8,5,10,7,12,13,2,16,3,6,17,11,18,9 59: 1,8,19,18,15,4,5,10,3,12,17,2,16,7,6,13,11,14,9 59: 1,13,10,14,6,17,5,19,7,12,4,11,16,3,15,8,2,18,9 59: 1,17,10,18,6,13,5,19,3,12,8,11,16,7,15,4,2,14,9 59: 2,6,18,17,12,11,1,14,4,10,16,3,19,5,9,8,7,15,13 59: 2,8,14,12,6,19,4,18,11,10,5,7,16,1,15,9,3,17,13 59: 2,8,14,15,9,16,1,18,5,10,11,7,19,4,12,6,3,17,13 59: 2,9,18,17,15,5,4,14,1,10,19,3,16,11,6,8,7,12,13 59: 5,1,19,2,18,12,6,14,16,4,8,10,3,7,11,17,15,13,9 59: 5,2,14,3,16,18,1,19,12,4,7,15,8,6,13,11,10,17,9 59: 5,4,19,7,17,12,1,15,13,2,11,14,3,8,16,10,18,9,6 59: 5,9,19,10,16,8,3,15,11,2,13,14,1,12,17,7,18,4,6 59: 5,11,19,17,13,7,1,14,6,4,18,10,8,12,16,2,15,3,9 59: 5,13,19,17,11,7,3,14,8,4,16,10,6,12,18,2,15,1,9 59: 7,1,19,3,13,17,4,16,18,2,8,9,5,6,15,11,12,10,14 59: 7,10,19,11,15,6,5,16,8,2,18,9,4,17,13,3,12,1,14 60: 1,4,19,6,12,14,8,18,13,10,7,2,11,5,9,15,3,16,17 *+# 60: 1,4,19,9,15,11,5,18,7,10,13,2,14,8,6,12,3,16,17 *+# 60: 1,6,18,7,9,16,8,19,14,10,5,3,11,4,12,13,2,15,17 *+# 60: 1,7,19,12,15,8,5,18,4,10,16,2,14,11,6,9,3,13,17 *+# 60: 5,1,15,3,12,17,8,14,16,10,4,6,11,2,9,18,7,19,13 *+# 60: 5,1,15,9,18,11,2,14,4,10,16,6,17,8,3,12,7,19,13 *+# 60: 5,3,14,4,9,19,8,15,17,10,2,7,11,1,12,16,6,18,13 *+# 60: 5,4,15,12,18,8,2,14,1,10,19,6,17,11,3,9,7,16,13 *+#Obviously, there are 16 solutions for the Extension puzzle. 8 of them are shown. The other 8 can be obtained by replacing each number N by ( 20 - N ) .