Source: Original.
Let consider the quadrilateral ABCD with the 2 diagonals AC and BD. The quadrilateral which meets the 4 characteristics is the following: AB = 5 BC = 13 CD = 8 DA = 11 AC = 17 BD = 9 Perimeter of the quadrilateral = 37 It is easy to check that these values are adequate with the following identities : c1 = cos(ABD) = ( 25 + 81 -121 ) / 90 = -1 / 6 s1 = sin(ABD) = sqr(35) / 6 c2 = cos(CBD) = ( 169 +81 - 64 ) / 234 = 31 / 39 s2 = sin(CBD) = 3sqr(35) / 26 Hence cos(ABD) = c1*c2 - s1*s2 = - 19 / 26 and AC^2 = 25 + 169 +130x19/26 = 289 ,so AC = 17 We can add another constraint. For example, if E is at the intersection of AC and BD ,the 8 segments AB,BC,CD,DA,AE,BE,CE,DE must be integers. The corresponding solution is AB = 16, BC = 26, CD = 11, DA = 13, AE = 6, BE = 18, CE = 12, DE = 9.
AD AB BC CD BD AC Perimeter 60 91 100 11 109 61 262 60 91 61 80 109 100 292 120 182 200 22 218 122 524 120 182 122 160 218 200 584 120 209 218 27 241 123 574 120 209 169 90 241 150 588 120 209 150 119 241 169 598 120 209 123 182 241 218 634 240 161 267 44 289 244 712 240 161 244 117 289 267 762
AC=(AD*BC+AB*DC)/DB=56
(25,39,52,56,60,65)
[The area of this quadrilateral is 1764, and thus is a solution nine
months ahead of its time for the MIT Technology Review's Novemeber/December
issue's PuzzleCorner, problem 1. - KD 11/18/97]
16, 63, 60, 25 / 65, 39 [Area = 1254, added 11/18/97 - KD] 16, 63, 39, 52 / 65, 60 25, 60, 52, 39 / 65, 56 25, 60, 39, 52 / 65, 63 25, 60, 56, 33 / 65, 52 39, 52, 56, 33 / 65, 60 35, 120, 117, 44 / 125, 75 35, 120, 100, 75 / 125, 117 44, 117, 75, 100 / 125, 120