## Ken's POTW

Triominos
 ``` A-----B-----C / \ / \ / \ / \ / \ / \ D-----E-----F-----G / \ / \ / \ / \ / \ / \ / \ / \ H-----I-----J-----K-----L \ / \ / \ / \ / \ / \ / \ / \ / M-----N-----O-----P \ / \ / \ / \ / \ / \ / Q-----R-----S ``` Take a set of 24 triominos (dominos with three sides, a number at each corner), consisting of all possible configurations of the values 0, 1, 2, and 3, and place them into a hexagon, two units on a side, such that each adjacent side matches correctly. Or, show why it can't be done. (Note that 1-2-3 is a different triomino than 1-3-2, since neither can be rotated to create the other; while 1-1-2 would be the same as 1-2-1, since the latter can be rotated to obtain the former.)

Here is a list of the 24 triminos, numbered clockwise:
 a. 0-0-0 b. 0-0-1 c. 0-1-1 d. 1-1-1 e. 0-0-2 f. 0-2-2 g. 2-2-2 h. 0-0-3 i. 0-3-3 j. 3-3-3 k. 1-1-2 l. 1-2-2 m. 1-1-3 n. 1-3-3 o. 2-2-3 p. 2-3-3 q. 0-1-2 r. 0-2-1 s. 0-1-3 t. 0-3-1 u. 0-2-3 v. 0-3-2 w. 1-2-3 x. 1-3-2
If it is possible, send your solution as a labeled copy of the above diagram.

Source: Original.

Solution
Mail to Ken